منابع مشابه
Many-Objective Evolutionary Optimisation
Many-objective evolutionary optimisation is a recent research area that is concerned with the optimisation of problems consisting of a large number of performance criteria using evolutionary algorithms. Despite the tremendous development that multi-objective evolutionary algorithms (MOEAs) have undergone over the last decade, studies addressing problems consisting of a large number of objective...
متن کاملPreference-guided evolutionary algorithms for many-objective optimization
This paper presents a technique that incorporates preference information within the framework of multi-objective evolutionary algorithms for the solution of many-objective optimization problems. The proposed approach employs a single reference point to express the preferences of a decision maker, and adaptively biases the search procedure toward the region of the Pareto-optimal front that best ...
متن کاملA Comparative Study on Evolutionary Algorithms for Many-Objective Optimization
Many-objective optimization has been gaining increasing attention in the evolutionary multiobjective optimization community, and various approaches have been developed to solve many-objective problems in recent years. However, the existing empirically comparative studies are often restricted to only a few approaches on a handful of test problems. This paper provides a systematic comparison of e...
متن کاملEvolutionary Multi-Objective Algorithms
The versatility that genetic algorithm (GA) has proved to have for solving different problems, has make it the first choice of researchers to deal with new challenges. Currently, GAs are the most well known evolutionary algorithms, because their intuitive principle of operation and their relatively simple implementation; besides they have the ability to reflect the philosophy of evolutionary co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Computing Surveys
سال: 2015
ISSN: 0360-0300,1557-7341
DOI: 10.1145/2792984